Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Hum Mov Sci ; 95: 103218, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643727

RESUMEN

This longitudinal study investigated the impact of the first independent steps on harmonic gait development in unilateral cerebral palsy (CP) and typically developing (TD) children. We analysed the gait ratio values (GR) by comparing the duration of stride/stance, stance/swing and swing/double support phases. Our investigation focused on identifying a potential trend towards the golden ratio value of 1.618, which has been observed in the locomotion of healthy adults as a characteristic of harmonic walking. Locomotor ability was assessed in both groups at different developmental stages: before and after the emergence of independent walking. Results revealed that an exponential fit was observed only after the first unsupported steps were taken. TD children achieved harmonic walking within a relatively short period (approximately one month) compared to children with CP, who took about seven months to develop harmonic walking. Converging values for stride/stance and stance/swing gait ratios, averaged on the two legs, closely approached the golden ratio in TD children (R2 = 0.9) with no difference in the analysis of the left vs right leg separately. In contrast, children with CP exhibited a trend for stride/stance and stance/swing (R2 = 0.7), with distinct trends observed for the most affected leg which did not reach the golden ratio value for the stride/stance ratio (GR = 1.5), while the least affected leg exceeded it (GR = 1.7). On the contrary, the opposite trend was observed for the stance/swing ratio. These findings indicate an overall harmonic walking in children with CP despite the presence of asymmetry between the two legs. These results underscore the crucial role of the first independent steps in the progressive development of harmonic gait over time.

2.
Front Hum Neurosci ; 15: 659415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149378

RESUMEN

The first years of life might be critical for encouraging independent walking in children with cerebral palsy (CP). We sought to identify mechanisms that may underlie the impaired development of walking in three young children with early brain lesions, at high risk of CP, via comprehensive instrumented longitudinal assessments of locomotor patterns and muscle activation during walking. We followed three children (P1-P3) with early brain lesions, at high risk of CP, during five consecutive gait analysis sessions covering a period of 1 to 2 years, starting before the onset of independent walking, and including the session during the first independent steps. In the course of the study, P1 did not develop CP, P2 was diagnosed with unilateral and P3 with bilateral CP. We monitored the early development of locomotor patterns over time via spatiotemporal gait parameters, intersegmental coordination (estimated via principal component analysis), electromyography activity, and muscle synergies (determined from 11 bilateral muscles via nonnegative matrix factorization). P1 and P2 started to walk independently at the corrected age of 14 and 22 months, respectively. In both of them, spatiotemporal gait parameters, intersegmental coordination, muscle activation patterns, and muscle synergy structure changed from supported to independent walking, although to a lesser extent when unilateral CP was diagnosed (P2), especially for the most affected leg. The child with bilateral CP (P3) did not develop independent walking, and all the parameters did not change over time. Our exploratory longitudinal study revealed differences in maturation of locomotor patterns between children with divergent developmental trajectories. We succeeded in identifying mechanisms that may underlie impaired walking development in very young children at high risk of CP. When verified in larger sample sizes, our approach may be considered a means to improve prognosis and to pinpoint possible targets for early intervention.

3.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921544

RESUMEN

Early brain lesions which produce cerebral palsy (CP) may affect the development of walking. It is unclear whether or how neuromuscular control, as evaluated by muscle synergy analysis, differs in young children with CP compared to typically developing (TD) children with the same walking ability, before and after the onset of independent walking. Here we grouped twenty children with (high risk of) CP and twenty TD children (age 6.5-52.4 months) based on their walking ability, supported or independent walking. Muscle synergies were extracted from electromyography data of bilateral leg muscles using non-negative matrix factorization. Number, synergies' structure and variability accounted for when extracting one (VAF1) or two (VAF2) synergies were compared between CP and TD. Children in the CP group recruited fewer synergies with higher VAF1 and VAF2 compared to TD children in the supported and independent walking group. The most affected side in children with asymmetric CP walking independently recruited fewer synergies with higher VAF1 compared to the least affected side. Our findings suggest that early brain lesions result in early alterations of neuromuscular control, specific for the most affected side in asymmetric CP.


Asunto(s)
Parálisis Cerebral , Fenómenos Biomecánicos , Parálisis Cerebral/diagnóstico , Niño , Preescolar , Electromiografía , Marcha , Humanos , Lactante , Músculo Esquelético , Caminata
4.
Front Physiol ; 11: 751, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792967

RESUMEN

When walking speed is increased, the frequency ratio between the arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether these switches are accompanied by changes in functional connectivity between multiple muscles. Subjects walked on a treadmill with their arms swinging along their body while kinematics and surface electromyography (EMG) of 26 bilateral muscles across the body were recorded. Walking speed was varied from very slow to normal. We decomposed EMG envelopes and intermuscular coherence spectra using non-negative matrix factorization (NMF), and the resulting modes were combined into multiplex networks and analyzed for their community structure. We found five relevant muscle synergies that significantly differed in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition period between them. The corresponding multiplex network contained a single module indicating pronounced muscle co-activation patterns across the whole body during a gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands: 4-8, 8-22, and 22-60 Hz. The community structure of the multiplex network revealed four modules, which clustered functional and anatomical linked muscles across modes of coordination. Intermuscular coherence at 4-22 Hz between upper and lower body and within the legs was particularly pronounced for 1:1 arm-leg coordination and was diminished when switching between modes of coordination. These findings suggest that the stability of arm-leg coordination is associated with modulations in long-distant neuromuscular connectivity.

5.
Front Physiol ; 11: 632, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714199

RESUMEN

Background: Walking problems in children with cerebral palsy (CP) can in part be explained by limited selective motor control. Muscle synergy analysis is increasingly used to quantify altered neuromuscular control during walking. The early brain injury in children with CP may lead to a different development of muscle synergies compared to typically developing (TD) children, which might characterize the abnormal walking patterns. Objective: The overarching aim of this review is to give an overview of the existing studies investigating muscle synergies during walking in children with CP compared to TD children. The main focus is on how muscle synergies differ between children with CP and TD children, and we examine the potential of muscle synergies as a measure to quantify and predict treatment outcomes. Methods: Bibliographic databases were searched by two independent reviewers up to 22 April 2019. Studies were included if the focus was on muscle synergies of the lower limbs during walking, obtained by a matrix factorization algorithm, in children with CP. Results: The majority (n = 12) of the 16 included studies found that children with CP recruited fewer muscle synergies during walking compared to TD children, and several studies (n = 8) showed that either the spatial or temporal structure of the muscle synergies differed between children with CP and TD children. Variability within and between subjects was larger in children with CP than in TD children, especially in more involved children. Muscle synergy characteristics before treatments to improve walking function could predict treatment outcomes (n = 3). Only minimal changes in synergies were found after treatment. Conclusions: The findings in this systematic review support the idea that children with CP use a simpler motor control strategy compared to TD children. The use of muscle synergy analysis as a clinical tool to quantify altered neuromuscular control and predict clinical outcomes seems promising. Further investigation on this topic is necessary, and the use of muscle synergies as a target for development of novel therapies in children with CP could be explored.

6.
Front Hum Neurosci ; 10: 425, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630551

RESUMEN

This work assesses one specific aspect of the relationship between auditory rhythm cognition and language skill: regularity perception. In a group of 26 adult participants, native speakers of 11 different native languages, we demonstrate a strong and significant correlation between the ability to detect a "roughly" regular beat and rapid automatized naming (RAN) as a measure of language skill (Spearman's rho, -0.47, p < 0.01). There was no such robust relationship for the "mirror image" task of irregularity detection, i.e., the ability to detect ongoing small deviations from a regular beat. The correlation between RAN and regularity detection remained significant after partialling out performance on the irregularity detection task (rho, -0.41, p, 0.022), non-verbal IQ (rho, -0.37, p < 0.05), or musical expertise (rho, -0.31, p < 0.05). Whilst being consistent with the "shared resources model" in terms of rhythm as a common basis of language and music, evolutionarily as well as in individual development, the results also document how two related rhythm processing abilities relate differently to language skill. Specifically, the results support a universal relationship between rhythmic regularity detection and reading skill that is robust to accounting for differences in fluid intelligence and musical expertise, and transcends language-specific differences in speech rhythm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...